默认排序
发布时间
36个结果
热门关键词:
技术资料分类:
全部
  • 12

    2020/03

    热加工模具是工业产品生产中不可缺少的工艺方法之一。它主要用于制造业和加工业。它是和冲压、锻造、铸造成型机械,同时和塑料、橡胶、陶瓷等非金属材料制品成型加工用的成形机械相配套,作为成形工具来使用的。热加工模具属于精密机械产品,因为它主要由机械零件和机构组成,如成形工作零件(凸模、凹模)、导向零件(导柱、导套等)、支承零件(模座等)、定位零件等;送料机构、抽芯机构、推料机构、检测与安全机构等。为提高模具的质量、性能、精度和生产效率,缩短制造周期,其零、部件(又称模具组合),多由标准零、部件组成。所以,模具应属于标准化程度较高的产品。一副中小型冲模或塑料注射模,其构成的标准零、部件可达90%,其工时节约率可达25%~45%。一、热加工用模模具的功能和作用现代产品生产中,热加工模具由于其加工效率高,互换性好,节约原材料,所以得到很广泛的应用。现代工业产品的零件,广泛采用冲击、成型锻造、压铸成形、挤压成形、塑料注射或其他成形加工方法,和成形模具相配套,经单工序或多道成形工序,使材料或胚料成形加工成符合产品要求的零件,或成分精加工前的半成品件。如汽车覆盖件,须采用多副模具,进行冲孔、拉深、翻边、弯曲、切边、修边、整形等多道工序,成形加工为合格零件;电视机外壳洗衣机内桶是采用塑料注射方法,经一次注射成型为合格零件的;发动机的曲轴连杆是采用锻造成形模具,经滚锻和模锻成形加工为精密机械加工前的半成品胚件的。高精度、**率、长寿命的冲模、塑料注射成形模具,可成形加工几十万,甚至几千万产品零件,如一副硬质合金模具,可冲压硅钢片零件(E型片、电机定转子片)上亿件,称这类模具为大批量生产用模具。适用于多品种、少批量或产品试制的模具有:组合冲模、快换冲模、叠层冲模或成型冲模,低熔点合金成型模具等,在现代加工业中,具有重要的经济价值,称这类模具为通用、经济模具。电子、计算机、现代通信器材与设备,电器、仪器与仪表等工业产品的元器件或零、部件越来越趋于微型化、精密化,其零件机构设计中的槽、缝、孔尺寸要求在0.3mm以下,批量生产用模具要求很高。如高压开关中的多触点零件,宽度仅为10mm,却需冲孔、冲槽、弯曲、三层叠压等工序,模具需设计为70工位的精密级进行冲模。又如,BP机中零件尺寸及其微小,对模具的要求更高。这类微型冲件和塑件用的模具,以成为高技术模具或**型模具。大型模具,重量在10t以上的已很常见,有些模具重量已达30t。如大型汽车覆盖件冲模,大型曲轴锻模,大尺寸电视机外壳用塑料注射模等重量都在10t以上。随着现代化工业和科学技术的发展,模具的应用越来越广泛,其适应性也越来越强。已成为工业国家制造工艺水平的标志和独立的基础工业体系。另外,采用模具进行成形加工,是少,无切削的主要工装,在大批、大量加工中,可使材料利用率达90%或以上。二、热加工模具分类及用途热加工模具的用途广泛,模具的种类繁多,科学的进行模具分类,对有计划的发展模具工业,系统的研究、开发模具生产技术,促进模具设计,制造技术的现代化,充分发挥模具的功能和作用;对研究、制订模具技术标准,提高模具标准化水平和专业化协作生产水平,提高模具生产效率,缩短模具的制造周期,都具有十分重要的意义。总体上说热加工模具可分为三大类:金属板材料成型模具,如冲模等;金属体积成型模具,如锻(镦、挤压)模,压铸模等;非金属材料制品用成型模具,如塑料注射模和压缩模,橡胶制品,陶瓷制品用成型模具等。三、热加工模具材料的作用和地位随着模具工业的迅速发展,对模具的使用寿命、加工精度等提出了更高的要求。模具材料性能的好坏和使用寿命的长短,将直接影响加工产品的质量和生产的经济效益。而模具材料的种类、热处理工艺、表面处理技术是影响模具使用寿命的极其重要的因素,所以世界各国都在不断的研究和开发新型模具材料,改进模具的热处理工艺,选用适当的表面处理技术,合理的设计模具结构加强对模具的维护等措施,来稳定和提高模具的使用寿命,防止模具的早期失效。模具材料的使用性能将直接影响模具的质量和使用寿命。模具材料的工艺性能将主要影响模具加工的难易程度、加工质量和生产成本。为此,应合理选择模具材料,改进热处理工艺和表面处理工艺,大力推广模具生产中的新材料、新工艺和新技术。四、热加工模具材料与模具寿命为了提高生产效率,提出毛胚精度和材料利用率,采用和发展少、无切削新工艺、新设备,对模具提出了向精密、多型腔、高寿命方向发展的要求,模具寿命的提高,*根本的办法是采用高性能的模具材料。尽管影响模具寿命的因素是多方面的,但模具材料的选用是一个很重要的因素。60年代以来,我国研制出不少适合我国特点的新型**模具钢,如热作模具钢中的3Cr3Mo3W2V、5Cr4W5Mo2V、4CrMnSiMoV、4Cr2NiMoV、5Cr4Mo3SiMnVA1等,冷作模具钢中的6Cr4W3Mo2VNb、7Cr7Mo3V2Si、7CrSiMnMoV、6CrNiMnSiMoV等新钢种的采用,均获得提高模具寿命倍数的效果。如冷作模具钢选用6Cr4W3Mo2VNb(65Nb)代替T10、Cr12MoV、W6Mo5Cr4V2等制作多工位冷镦机用的内六角凸模、十字槽光凸模、螺栓切边模、冷镦螺栓顶模、钢板弹簧冲孔凸模、螺栓平圆头冲模、圆环冷冲模等;热作模具钢选用3Cr3Mo3W2V(HM1)代替3Cr2W8V钢等制作轴承套圈的热冲压凸模和凹模、连杆辊锻成形模、小型机锻模等都显著提高了模具寿命,因此作为模具工作者包括模具设计人员,首要任务是正确选用并合理使用模具材料,以保证模具的正常使用寿命。五、常用金属的线膨胀系数及收缩率线膨胀系数表示摄氏温度升高一度时单位材料的尺寸变化。收缩率是指由热加工温度至室温这段温度区间内单位长度金属材料的尺寸变化,它与材料的线膨胀系数和热加工温度两者有关。模膛设计时,需要考虑工件的收缩率,精密加工时还需考虑模具的热胀冷缩问题。热加工时刚料的收缩率一般去1.2~1.5%,而对细长的杆类件,扁薄的工件,冷却快或打击次数多热加工温度低的工件收缩率取0.8~1.2%;带大头的长杆锻件,头部和杆部的冷缩塑料件一般取(0.3~0.5)%。铝合金为(0.8~1.0)%,镁合金为0.8%,钛合金为(0.5~0.7)%,铜合金为(1.0~1.3)%。六、常用金属的变形抗力金属的变形力σs也称真实应力或流动应力。对于理想塑性材料,变形抗力等于材料的屈服极限;对于塑性硬化材料,变形抗力等于考虑了变形硬化后的屈服极限。在热锻温度下,变形抗力还可以用强度极限σb表示。通常金属的变形抗力与材料的化学成分、组织、变形温度,应变速率及变形程度等有关,可表达如下σs=σ(T,ε1,ε2,x)式中 T——变形温度;ε1——变形程度;ε2——应变速率;x——材料的物理化学性质。通常变形抗力随温度的升高而降低,应变速率增大时,变形抗力增大,温度升高,这种现象越明显。变形程度对变形抗力的影响有两种情况,某些材料随变形程度增加,变形抗力不断增大;而有些材料,在某一温度下,在某一变形程度前,变形抗力随变形程度的增加而增大,但超过该变形程度后,由于动态恢复和动态再结晶进行迅速,随变形程度增大时,变形抗力逐渐减小。一般地讲,当变形温度高于再结晶温度时,由于形变硬化的现象不明显,应变速率的影响大,变形程度的影响小;而变形温度低于再结晶温度时,变形程度的影响较大,应变速率的影响较小。  举例说明:热锻模具钢的合理选用。1、热锻模具钢的性能要求:(1)高的冲击韧度和断裂韧度:对锤锻模具钢,冲击韧度应大于或等于30J/㎝,冲击韧度是锻模钢的基本性能。为阻止或延缓裂纹扩展而导致模具断裂,还需要锻模钢必须具有高的断裂韧度。(2)高的高温硬度及高温强度:为防止热锻模发生早期磨损及变形,模具钢应具有较高的高温硬度和高温强度。(3)高的淬火性:热锻模尺寸较大,要求模具整个截面力学性能均匀一致,如果心部未淬透,则可能形成贝氏体或其他组织,导致模具早期断裂。(4)高的热疲劳抗力:若导热性好,热胀系数小,则热疲劳抗力高,可以延缓热疲劳裂纹的产生。(5)较高的回火稳定性:防止模具在高温服役中被继续回火,导致硬度下降而影响耐磨性。(6)良好的工艺性能及抗氧化性能。2、热锻模具用钢及合理选材:重型机械厂或钢厂生产的其它锻模钢有:5CrNiTi、4SiMnMoV及5SiMnMoV、5CrNiW、5CrNiMoV等,国外进口锻模钢有55CrNiMoV6等。   机械压力机模块用钢钢号为:4Cr5MoSiV1(H13)、4Cr5MoSiV、4Cr3W2Si、3Cr3Mo3W2V、5Cr4W5Mo2V,应用较好的其它钢号4Cr3Mo3W4VNb、2Cr3Mo3VNb、2Cr3Mo2NiVSi;国外进口锻模钢有YHD3等,压力机热锻的特点是成形速度慢,单件滞模时间长(约3~6s),因此,模腔表面温升高,瞬时温度可达约700℃。冷却及润滑条件较好时,温度可能偏低一些,但也会达到500℃左右,这也超过了5CrNiMo、5CrMnMo模块的回火温度,从而导致模具早期磨损,压塌等失效。因此,需要选用耐热性较高的高强韧性模具钢制作压力机模具。下面列出了锤锻模用钢的选择,可供选材参考。锤锻模用钢的选择模具类型钢的选用小型 5CrMnMo、5CrNiTi、5SiMnMoV、4SiMnMoV、6SiMnMoV中型 5CrMnMo、5CrNiTi、5SiMnMoV、4SiMnMoV、6SiMnMoV大型 5CrNiMo、5CrNiW、5CrNiTi、5CrMnMoSiV特大型 5CrNiMo、5CrNiW、5CrNiTi、5CrMnMoSiV堆焊锤锻模 5Cr2MnMo压力机锻模(大尺寸) 5CrNiMo、5Cr2NiMoVSi通常中、小型压力机锻模可选用3Cr2W8V、4Cr5MoSiV1、4Cr5MoSiV及3Cr—3Mo型热作模具钢、5Cr4W5Mo2V、4Cr3Mo3W4VNb钢等。目前应用较多的是:3Cr2W8V、4Cr5MoSiV1钢。对锤锻模尚有如下分类方法:小型:吨位小于1t,高度小于275mm;中型:吨位1~3t,高度275~325mm;大型:吨位4~6t,高度325~375mm;特大型:吨位大于6t,高度在375mm以上。现就我公司所采用的热锻模材料分析如下: H13:化学成份(%) (国标GB1299—85)e—0.32~0.45 Si—0.80~1.20 Mn—0.20~0.50Cr—4.75~5.50 Mo—1.10~1.75 V—0.80~1.20S、P≤0.033Cr2W8V:属莱氏体钢,在高温下有较高的硬度,但其韧性和塑性较差,淬透性中等,截面厚度≤80mm可淬透;此钢相变温度较高,耐热疲劳性良好。用于作高温、高应力但不受冲击载荷的凸模、凹模,如平锻机上的凹凸模、镶块、铜合金挤压模、压铸用模具;还可作高温下工作的热剪切刀等。
  • 12

    2020/03

    钢是铁、碳和少量其它元素的合金。不锈钢或者10.5%或以上铬金含量的抗腐蚀性合金钢是该类金属的通用术语。应该记住不锈钢并不是说这种钢材不生锈或不会被腐蚀,而只不过是它比不含铬的合金的耐腐蚀性能强得多。除了铬金属之外,其它金属元素如镍、钼、钒等也可以加入合金中用于改变合金钢的性能,从而生产出不同等级、不同性能的不锈钢。因应用目的和场所的不同,仔细挑选性能*为合适的不锈钢所制造的刀具,对于你特定工作的效率和成功至关重要,刀具中不同金属元素带来的优点。简单地说:钢就是铁和碳的合金。其它成分是为了使钢材性能有所区别。以下以字母顺序列出重要的钢材,他们包含以下成分:碳(Carbon)存在于所有的钢材,是*重要的硬化元素。有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有0.5%以上的碳,也成为高碳钢。铬(Chromium)增加耐磨损性,硬度,*重要的是耐腐蚀性,拥有13%以上的认为是不锈钢。尽管这么叫,如果保养不当,所有钢材都会生锈的。锰(Manganese)重要的元素,有助于生成纹理结构,增加坚固性、强度、耐磨损性。在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM 420V。钼(Molybdenum)碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。镍(Nickle)保持强度、抗腐蚀性、韧性。出现在L-6AUS-6和AUS-8中。硅(Silicon)有助于增强强度。和锰一样,硅在钢的生产过程中用于保持钢材的强度。钨(Tungsten)增强抗磨损性。将钨和适当比例的铬或锰混合用于制造高速钢。在高速钢M-2中就含有大量的钨。钒(Vanadium)增强抗磨损能力和延展性。一种钒的碳化物用于制造条纹钢。在许多种钢材中都含有钒,其中M-2,Vascowear,CPM T440V和420VA含有大量的钒。而BG-42与ATS-34**的不同就是前者含有钒。钢材大体种类:1. 低碳钢又称软钢, 含碳量从0.10%至0.30%低碳钢易於接受各种加工如锻造,焊接和切削,常用於制造链条、铆钉、螺栓、轴等。2. 中碳钢含碳量从0.30%至0.60%, 用以制造重压锻件、车轴、钢轨等。3. 高碳钢常称工具钢,含碳量从0.60%至1.70%,可以淬硬和回火。锤、撬棍等由含碳量0.75%的钢制造;切削工具如钻头、丝攻、铰刀等由含碳量0.90%至1.00%的钢制造.4. 合金钢钢中加入其它金属如铬、 镍、 钨、 钒等, 使具有若干新的特性。由於各种合金元素的掺入,合金钢可具有防腐蚀、耐热、耐磨、防震和抗疲乏等不同特性。5. 高速钢含有各种成份和份量, 如钨、 铬、 钒、 钴和钼等。 高速钢制成的切削工具, 可用高的速度求切削硬材料, 并能承担强力的切削。高速钢切削工具在高的速度中仍能使刃口保持锋利, 其他钢材则可能变钝。
  • 12

    2020/03

    高速钢是一种含多量碳(C)、钨(W)、钼(Mo)、铬(Cr)、钒(V)等元素的高合金钢,热处理后具有高热硬性。当切削温度高达600℃以上时,硬度仍无明显下降,用其制造的刀具切削速度可达每分钟60米以上,而得其名。高速钢按化学成分可分为普通高速钢及高性能高速钢,按制造工艺可分为熔炼高速钢及粉末冶金高速钢。普通高速钢高速钢是制造形状复杂、磨削困难的刀具的主要材料。普通高速钢可满足一般需求。常见的普通高速钢有两种,钨系高速钢和钨钼系高速钢。钨系高速钢 典型牌号为W18Cr4V,热处理硬度可达63-66HRC,抗弯强度可达3500MPa,可磨性好。钨钼系高速钢 典型牌号为W6Mo5Cr4V2,目前正在取代钨系高速钢,具有碳化物细小分布均匀,耐磨性高,成本低等一系列优点。热处理硬度同上,抗弯强度达4700MPa,韧性及热塑性比w18Cr4V提高50%。常用于制造各种工具,例如钻头、丝锥、铣刀、铰刀、拉刀、齿轮刀具等,可以满足加工一般工程材料的要求。只是它的脱碳敏感性稍强。另一牌号的普通高速钢为W9Mo3Cr4V,这是中国近几年发展起来的新品种。强度及热塑性略高于W6Mo5Cr4V2,硬度为HRC63-64,与韧性相配合,容易轧制、锻造,热处理工艺范围宽,脱碳敏感性小,成本更低。这三个牌号的普通高速钢在中国市场的比例分别为:W18Cr4V,16.5%;W6Mo5Cr4V2, 69%;W9Mo3Cr4V,11%。高性能高速钢高性能高速钢具有更好的硬度和热硬性,这是通过改变高速钢的化学成分,提高性能而发展起来的新品种。它具有更高的硬度、热硬性,切削温度达摄氏650度时,硬度仍可保持在60HRC以上。耐用性为普通高速钢的1.5-3倍,适用于制造加工高温合金、不锈钢、钛合金、高强度钢等难加工材料的刀具。主要品种有4种,分别为高碳系高速钢、高钒系高速钢、含钴系高速钢和铝高速钢。 高碳系高速钢 牌号为9W18Cr4V,因含碳量高(0.9%),故硬度、耐磨性及热硬性都比较好。用其制造的刀具在切削不锈钢、耐热合金等难加工材料时,寿命显著提高,但其抗弯强度为3000MPa,冲击韧性较低,热处理工艺要求严格。高钒系高速钢 牌号有W12Cr4V4Mo及W6Mo5Cr4V3(美国牌号M3),含钒量达3-4%,使耐磨性大大提高,但随之带来的是可磨性变差。高钒系高速钢的使用及发展还需要依赖于磨削工艺及砂轮技术的发展。钴高速钢 牌号有W2Mo9Cr4VCo8(美国牌号M42)。其特点为:含钒量不高(1%),含钴量高(8%),钴能促使碳化物在淬火加热时更多地溶解在基体内,利用高的基体硬度来提高耐磨性。这种高速钢硬度、热硬性、耐磨性及可磨性都很好。热处理硬度可达67-70HRC,但也有采取特殊热处理方法,得到67-68HRC硬度,使其切削性能(特别是间断切削)得到改善,提高冲击韧性。钴高速钢可制成各种刀具,用于切削难加工材料效果很好,又因其磨削性能好,可制成复杂刀具,国际上用得很普遍。但中国钴资源缺乏,钴高速钢价格昂贵,约为普通高速钢的5-8倍。铝高速钢 牌号为W6Mo5Cr4V2Al、W6Mo5Cr4V5SiNbAl等,主要加入铝(Al)和硅(Si)、铌(Nb)元素,来提高热硬性、耐磨性。适合中国资源情况,价格较低。热处理硬度可达到68HRC,热硬性也不错。但是这种钢易氧化及脱碳,可塑性、可磨性稍差,仍需改进。国际市场上高性能高速钢使用量已经超过普通高速钢25-30%。粉末冶金高速钢粉末冶金高速钢及其制品。近几年来高速钢的**变革就是发展了粉末冶金高速钢,它的性能优于熔炼高速钢。用高压氩气或氮气雾化熔融高速钢水,得到细小高速钢粉末,筛选后为0.4mm以下的颗粒;在真空(0.04Hg)状态下,密闭烧结达到密度65%;再在1100℃高温、300MPa高压下制成密度100%的钢坯,然后锻轧成钢材,这样有效地解决了熔炼高速钢在铸锭时要产生粗大碳化物偏析的问题,而它无论截面多大,其碳化物级别均为一级。碳化物晶粒极细,小于0.002mm,而熔炼高速钢碳化物晶粒为0.008-0.02mm。牌号为APM T15的粉末冶金高速钢,它的强度、韧性分别是同化学成分的熔炼高速钢的2倍及2.5倍。尽管含钒量达5%,但由于碳化物晶粒细,可磨性依然很好。高温热硬度也比熔炼高速钢提高0.5-1HRC。又由于其物理机械性能高度各向同性,淬火变形小。碳化物颗粒均匀分布的表面较大,不易从刀具的切削刃上剥落,小尺寸刀具耐磨性提高1.5-2倍,大尺寸刀具提高20-30%。粉末冶金高速钢具有良好的力学性能,适合制造:间断切削条件下易崩刃的刀具、强度高而切削刃又必须锋利的刀具,如插齿刀、滚刀、铣刀,高压动载荷下使用的刀具。它的碳化物偏析小,晶粒细,可磨性好,适合制造:大尺寸刀具、精密刀具、复杂刀具。这类材料的高温热硬度高,又适合制造难加工材料所用的刀具,确实是面面俱到。粉末冶金高速钢生产过程较复杂,造价较高。中国钢厂提供的品种较少,市场用量也很少。国际上**钢厂如美国Crucible公司已可提供近二十种粉末冶金高速钢,日本神户制钢所、日立金属公司均可提供近十种粉末冶金高速钢,供应量也在迅速增长。日本**的OSG公司用粉末冶金高速钢制造了钻头、铣刀、丝锥,NACHI公司制造了滚刀、插齿刀、剃齿刀。有理由相信技术性能高的粉末冶金高速钢将会得到更广泛的应用,为金属加工业带来新的发展。高速钢的市场定位及发展趋势高速钢材料按制造工艺可分为熔炼高速钢及粉末冶金高速钢。自二十世纪初发现高速钢以来,对现代工业发展起到了重要作用。可以说没有高速钢,就没有现代的金属加工业。尽管六十年代起,硬质合金等材料崛起,但是对于制造形状复杂、磨削困难的刀具,如拉刀、剃齿刀、插齿刀等,高速钢始终处于主导地位。特别是要求刀具具备高韧性时,就非高速钢莫属了。高速钢的主要应用领域是机械和工具制造业,必然要适应这个行业的发展,近几年来机械加工采用了高速度的数控机床,例如加工中心、车削中心等,金属切削速度越来越快,要求刀具必须具有高速使用性能,即热硬性、耐磨性、冲击韧性要好,因此,厂家纷纷研发符合上述要求的高速钢材料。在机加工费用中,材料约占15-20%,刀具约占25-35%。用户对刀具的选用也越来越趋向合理,即选用性能与价格比好的刀具。高速钢刀具占主导地位的领域,如精密零件、复杂零件、成形加工零件的市场也越来越大,对可磨性的要求也越来越高。高速钢走过一个世纪的钢种,应瞄准特定市场空间,提高自身技术含量,去抗衡其它材料的挑战。
  • 12

    2020/03

    一、不锈钢定义: 在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢。 二、不锈钢原理: 决定不锈钢属性的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。迄今为止,还没有不含铬的不锈钢。铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,能促使铁基固溶体的电极电位提高,同时吸收铁的电子使铁钝化,并在表面形成很薄的铬膜,以隔开侵入钢内的氧气而起到抵抗腐蚀破坏的作用。 三、高合金特性: 为了保持不锈钢所固有的耐腐蚀性,钢必须含有12%以上的铬。 四、不锈锈钢种类: 不锈钢的各类繁多,常温下按组织结构可分为几类: 1.奥氏体型:如304、321、316、310等; 2.马氏体或铁素体型:如430、420、410等; 五、不锈钢为什么也生锈? 当不锈钢管表面出现褐色锈斑(点)的时候,人们大感惊奇:认为 “不锈钢是不生锈的,生锈就不是不锈钢了,可能是钢质出现了问题”。 其实,这是对不锈钢缺乏了解的一种片面的错误看法。不锈钢在一定的条件下也会生锈的。 不锈钢具有抵抗大气氧化的能力---即不锈性,同时也具有在含酸、碱、盐的介质中耐腐蚀的能力---即耐蚀性。但其抗腐蚀能力的大小是随其钢质本身化学组成、加互状态、使用条件及环境介质类型而改变的。如304钢管,在干燥清洁的大气中,有**优良的抗锈蚀能力,但将它移到海滨地区,在含有大量盐份的海雾中,很快就会生锈了;而316钢管则表现良好。因此,不是任何一种不锈钢,在任何环境下都能耐腐蚀, 不生锈的。 不锈钢是靠其表面形成的一层极薄而坚固细密的稳定的富铬氧化膜(防护膜),防止氧原子的继续渗入、继续氧化,而获得抗锈蚀的能力。一旦有某种原因,这种薄膜遭到了不断地破坏,空气或液体中氧原子就会不断渗入或金属中铁原子不断地析离出来,形成疏松的氧化铁,金属表面也就受到不断地锈蚀。 当不锈钢表面存积著含有其他金属元素的粉尘或异类金属颗粒的附著物,在潮湿的空气中,附著物与不锈钢间的冷凝水,将二者连成一个微电池,引发了电化学反应,保护膜受到破坏,称之谓电化学腐蚀, 生活实际、工程实际中的金属腐蚀,绝大多数都属于电化学腐蚀。 六、不锈钢为什么也会导磁? 人们常以为用磁铁吸附不锈钢,可验证其优劣和真伪,不吸无磁,认为是好的,货真价实;吸者有磁性,则认为是冒牌假货。其实,这是一种极其片面的、不切实际的错误的辨别方法。 奥氏体型是无磁或弱磁性,马氏体或铁素体是有磁性的。 通常用作装饰管板的不锈钢多数是奥氏体型的304材质,一般来讲是无磁或弱磁的,但因冶炼造成化学成分波动或加工状态不同也可能出现磁性,但这不能认为是冒牌或不合格,如304不锈钢经过冷加工,组织结构也会向马氏体转化,冷加工变形度越大,马氏体转化越多,钢的磁性也越大。如同一批号的钢带,生产Φ76管,无明显磁感,生产Φ9.5管。因冷弯变形较大磁感就明显一些,生产方矩形管因变形量比圆管大,特别是折角部分,变形更激烈磁性更明显。 特别要提出的是,因上面原因造成的304不锈钢的磁性,与其他材质质的不锈钢,如430、碳钢的磁性完全不是同一级别的,如果不锈钢带弱磁性或完全不带磁性,应判别为304或316材质;如果与碳钢的磁性一样,表现出强磁性,应判别为不是304材质。
  • 12

    2020/03

    618预加硬塑胶模钢618瑞典“一勝百"优质预加硬塑料模钢  AISI-P20 Modified主要成份(%)C碳:0.38;Si硅:0.3;Mn錳:1.5;Cr铬:1.9;Mo钼:0.15出厂状态软化退火HR280-320钢材特点 ASSAB 618为真空除气制炼之合金钢,纯净度高,经超声波检验,硬度及金相结构均匀,抛光容易。  用 途 热塑性塑料的注塑模具和挤压模具,吹气模具。成形工模压缩制动模(视需要可施与火焰硬化或氮气处理。)结构零件,轴承。 S136透明耐蚀镜面模钢S-136▲瑞典“一勝百”透明耐蚀镜面模钢主要成份   (%)C碳:0.38;Si硅:0.9;Mn錳:0.5;Cr铬13.6;V釩:0.3出厂状态软化,退火HR≤215钢材特点1.*佳之抛光性。   2.渗透性良好。   3.良好之抗腐蚀性。   4.此钢材经淬火及镜面磨光后,其抗腐蚀性能更加可靠。用 途精制各式塑料表面模,放大镜或相机镜头等。
  • 12

    2020/03

     淬火残余力是指工件经淬火后*终残存下来的应力,对工件的形状,尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。    但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变害为利。分析钢在淬火过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。关于表层残余压应力的合理分布对零件使用寿命的影响已经引起了人们的广泛重视。一、钢的淬火应力工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部**冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下*终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成份和工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,**形成的残余应力就愈大。另一方面钢在淬火过程中由于组织的变化即奥氏体向马氏体转变时,比容的增大会伴随工件体积的膨胀,工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的*终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。实践证明,任何工件在淬火过程中的相变,热应力和组织应力都会发生。只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、工艺参数等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。组织应力占主导地位时的作用结果是工件心部受压表面受拉。二、应力对淬火裂纹的影响存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内(尤其是在**拉应力下)才会表现出来,若在压应力场内并无促裂作用。淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑制纵裂的目的。其效果将随高温冷却速度的加快而增大。而且,在能淬透的情况下,截面尺寸越大的工件,虽然实际冷却速度更缓,开裂的危险性却反而愈大。这一切都是由于这类钢的热应力随尺寸的增大实际冷却速度减慢,热应力减小,组织应力随尺寸的增大而增加,**形成以组织应力为主的拉应力作用在工件表面的作用特点造成的。并与冷却愈慢应力愈小的传统观念大相径庭。对这类钢件而言,在正常条件下淬火的高淬透性钢件中只能形成纵裂。避免淬裂的原则是设法尽量减小截面内外马氏体转变的不等时性。仅仅实行马氏体转变区内的缓冷却不足以预防纵裂的形成。一般情况下只能产生在非淬透性件中的裂纹,虽以整体快速冷却为必要的形成条件,可是它的真正形成原因,却不在快速冷却(包括马氏体转变区内)本身,而是淬火件局部位置(由几何结构决定),在高温临界温度区内的冷却速度显著减缓,因而没有淬硬所致。产生在大型非淬透性件中的横断和纵劈,是由以热应力为主要成份的残余拉应力作用在淬火件中心,而在淬火件末淬硬的截面中心处,首先形成裂纹并由内往外扩展而造成的。为了避免这类裂纹产生,往往使用水--油双液淬火工艺。在此工艺中实施高温段内的快速冷却,目的仅仅在于确保外层金属得到马氏体组织;而从内应力的角度来看,这时快冷有害无益。其次,冷却后期缓冷的目的,主要不是为了降低马氏体相变的膨胀速度和组织应力值,而在于尽量减小截面温差和截面中心部位金属的收缩速度,从而达到减小应力值和*终抑制淬裂的目的。
新闻动态